Assignment 7
There are 5 questions in this assignment. The page number and question number for each question correspond to that in Royden's Real Analysis, 3rd or 4th edition.

1. (3rd: P.89, Q3)
(by the monotonicity)
Let f be a nonnegative measurable function. Show that $\int f=0$ implies $f=0$ a.e. and that $\int f \in \mathbb{R}$ implies that $f(x) \in \mathbb{R}$ abe.
2. (3rd: P.89, Q4; 4th: P.85, Q24)

Let f be a nonnegative measurable function.
a. Show that there is an increasing sequence $\left\{\varphi_{n}\right\}$ of nonnegative simple functions each of which vanishes outside a set of finite measure such that $f=\lim \varphi_{n}$.

b. Show that $\left\{f=\sup \int \varphi\right.$ over all nounegatu simple functions $\varphi \leq f$ with φ vanishing outside a set of finite measure. $\delta_{2}=\left\{\rho: \subset \in S^{+}(E), p \leq\{ \}\right.$.

$$
F(x)=\int_{-\infty}^{x} f
$$

is continuous by using Theorem 10 (3rd. ed).
(Note: Theorem 10 is the monotone convergence theorem)
** (3rd: P.89, Q6; 4th: P.85, Q25)
Let $\left\{f_{n}\right\}$ be a sequence of nonnegative measurable functions that converge to f, and suppose $f_{n} \leq f$ for each n. Show that

$$
\int f=\lim \int f_{n}
$$

5. * (3rd: P.89, Q7; 4th: P.85, Q25 for part b.)
a. Show that we may have strict inequality in Fatou's lemma. (Consider the sequence $\left\{f_{n}\right\}$ defined if relax the by $f_{n}(x)$ if 1 if $n<x+1$, with $f_{n}(x)=0$ otherwise). Is the lemma True
 tons. (Let $f_{n}(x)=0$ if $x<n, f_{n}(x)=1$ for $x \geq n$) - How about on [abb] rather than on \mathbb{R} ?
G. Show that $[01)=\bigcup_{n=1}^{\infty}\left(\frac{1}{2^{n}}, \frac{1}{2^{n-1}}\right]$. Let $N \in \mathbb{N}$ and

$$
\begin{aligned}
& \operatorname{man}_{N}(x)= \begin{cases}n \cdot 2^{n} & \text { if } x \in\left(\frac{1}{2^{n}}, \frac{1}{2^{2}}\right. \\
0 & \text { otherwise }\end{cases} \\
& \text { my rievorant of }\left\{f_{N}, N \in \mathbb{N}\right\}
\end{aligned}
$$

