MATH4050 Real Analysis
Assignment 7

There are 5 questions in this assignment. The page number and question number for each question
correspond to that in Royden’s Real Analysis, 3rd or 4th edition.
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2. (3rd: P.89, Q4; 4th: P.85, Q24)
Let f be a nonnegative measurable function.

a. Show that there is an increasing sequence {¢,} of nonnegative simple functions each of which
vanishes outside a_set of finite measure such al;lat f=1limp,.
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Let f be a nonnegative integrable function. Show that the functlon F defined
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is continuous by using Theorem 10 (3rd. ed).
(Note: Theorem 10 is the monotone convergence theorem)

éf.k(?md: P.89, Q6; 4th: P.85, Q25)
Let { f,} be a sequence of nonnegative measurable functions that converge to f, and suppose f, < f

for each n. Show that
/ f =Ilim / fn.
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5. (3rd: P.89, Q7; 4th: P.85, Q25 for part b.)

a. Show that we may have strict inequality in Fatou’s lemma. (Consider the sequence {f,} defined
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